深層水利用調查事業

山 形 陽 一・久 野 正 博・中 西 克 之

目 的

深層水はすでに高知、富山及び沖縄で取水されており、 本県においても尾鷲市付近の熊野灘海域において取水が 検討されている。そこで、深層水の利用を図るうえで必 要となる基礎的資料を得ると共に、熊野灘沿岸の海洋構 造に関する物理化学的資料を得ることを目的として、調 査船「あさま丸」による海洋調査を尾鷲市沖の熊野灘に おいて実施した。

方 法

調査地点は図 1 に示した尾鷲海底谷付近の 5 地点である。このうち、水深約650 mの St.2 では、CTD により水温・塩分を測定するとともに転倒採水器を用いて採水し、pH, DO、Chl-a を測定した。また試水の一部を濾過後凍結し、後日栄養塩である NO_2 -N、 NO_3 -N、 NH_4 -N、 PO_4 -P 及び Si の分析を行った。DIN の値は NO_2 -N、 NO_3 -N 及び NH_4 -N の合計を用いた。St.2 以外の4 地点では CTD による水温・塩分調査のみを水深300 m(もしくは海底直上)まで実施した。調査は、4、6、8、10、12及び 2 月の 6 回行った(12月は 120 120 120 130 140 1

この事業は、本年度に資料集を付した報告書を別途発行する予定である。データ量が多いため、ここでは今年度の概要について St. 2 を代表点として記載した。

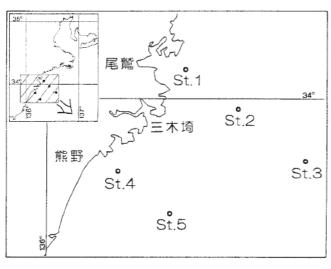


図1 調 査 地 点

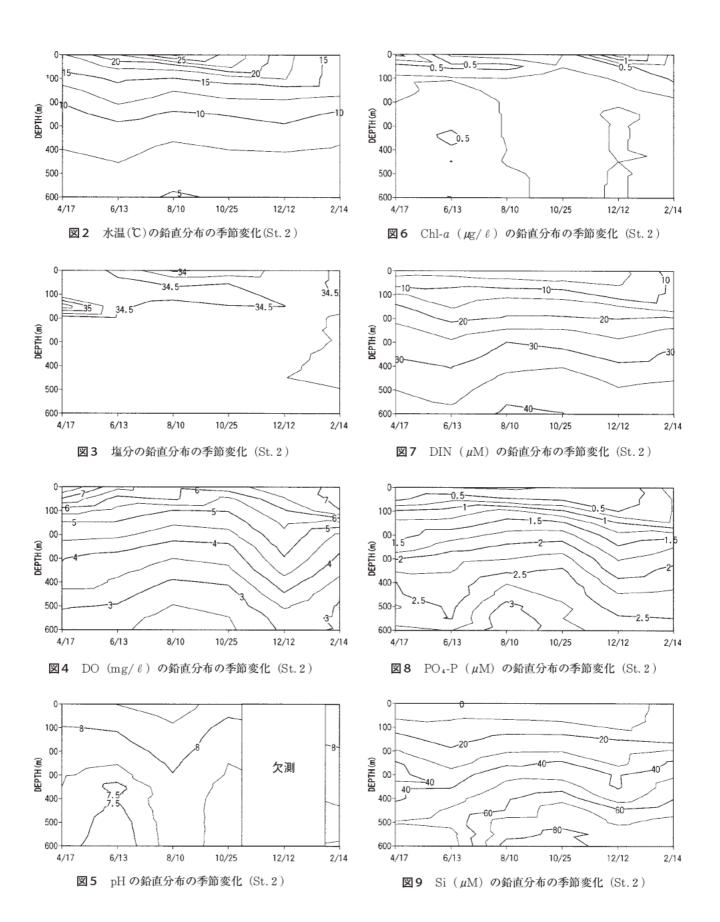
結 果

1. 水温・塩分

水温は、例年通り水深が深くなるにしたがって低下した(図 2)。今年度は、 $4\sim12$ 月は例年並みで推移したが、2月は例年に比べて低く、特に0 m層では13.6 \mathbb{C} と平成 $10\sim12$ 年度の平均値に比べて3 \mathbb{C} 以上低かった。これは、冬季に黒潮系暖水の影響が小さかったためであると考えられる。一般的に深層水とされる300 m以深では平成11年度及び12年度には10 \mathbb{C} 以上の水温も観測されたが、今年度は周年10 \mathbb{C} 以下の水温で移行した。

塩分は、平成11年度及び12年度は10月に表層付近で低下が見られたが、今年度は低下が見られなかった(図3)。水深と塩分の関係については例年同様に、水深が深くなるとともにその値は上昇し、100m前後で概ね34.4~34.6とピークの値を示した。

2. DO, PH, Chl-a


DO は、水深100~200m前後までは夏季から秋季の高水温期に他の季節より低くなるが、300m以深では周年ほぼ安定し、水深が深くなるにつれて低下した(図 4)。今年度は、8月及び10月に全体的に例年に比べて低めであった。一方、550m以深では例年は3.0ppm以下で移行するのに対し、今年度は12月に3.0ppm以上の値が観測された。

pH は,表層では $8.1\sim8.4$ の間で変化した(図 5)。水深が深くなるにしたがって低下し,水深400m以深では8.0以下であった。また,6 月には350m層まで7.5以下のpH の低い海水がみられた。

Chl-a は昨年度よりやや低めに経過した(図6)。水深100 m以浅では $0.5\,\mu\mathrm{g}/\ell$ 以上の比較的高い値がみられ, $0\,\mathrm{m}$ 層では $4\,\mathrm{F}$ 及び12月に $1.0\,\mu\mathrm{g}/\ell$ 以上であった。 $150\,\mathrm{m}$ 以深ではおおむね $0.5\,\mu\mathrm{g}/\ell$ 以下と少なかったが, $6\,\mathrm{F}$ だけは $150\,\mathrm{m}$ 以深でも $0.5\,\mu\mathrm{g}/\ell$ 以上の層が見られた。

3. 栄養塩

DIN は、水深50m以浅では $4\sim12$ 月には 10μ M以下であった(図7)。それ以深では水深が深くなるに従って濃度は高くなり、水深 $500\sim600$ mでは 40μ M前後であっ

た。ただし、2月には水深50m以浅でも10 μ M以上であった。なお, NO_2 -N は、8月,12月及び2 月に水深150m以浅で0.5 ~ 0.8 μ M と高い値が見られたが,それ以外は0.2 μ M前後と低濃度であった。また, NH_4 -N (0.1 ~ 2.1 μ M) は特に一定の傾向はなかった。

 PO_4 -P, Si も DIN と同じく,水深が深くなるに従って濃度が高くなった(図 8 , 9)。また,2 月に表層でも比較的高い濃度になる点も同様であった。一部の層で濃度の低い水塊が見られた。

黒潮系の海水の影響を受けた年は、冬季に水温が高め

であると共に表層で貧栄養状態である。それに対し,黒 潮系の海水の影響が小さかった今年度は,冬季に水温が 低めであると共に表層の栄養塩濃度が高かった。また, 一般的に黒潮系の海水は,貧栄養であることが知られて いる。これらから,冬季に黒潮系の海水の影響をうけた 年は,高水温,貧栄養の海水が比重の差の関係で表層付 近に流入し,冬季も表層で貧栄養になっていると考えら れる。一方,黒潮系の海水の影響が小さかった今年度は, 高水温,貧栄養の海水の流入が無いために低温,富栄養 になっていると考えられる。